
Investigating Odometry error caused during
collisions due to bump sensors

2073015 2071959

Abstract—Collisions are generally undesired in mobile
robots. Most of the systems use a submodule of collision
avoidance. In this report, we investigate the errors caused
due to collision and how it varies according to different robot
parameters, i.e. speed and angles. In the 3pi+ robot, we made
an assumption based on existing literature on how it creates
an Odometry inaccuracy. Our results use the mean and
variance of the recorded error to explain the error magnitude
in different scenarios.

I. INTRODUCTION

The 3pi+ Pololu robot comes with encoder-based kine-
matics. Here we look into the background of our robot and
its motivation to do our experiment.

A. Background

Mobile robots’ positioning system is an integral part of
their operation worldwide. It is responsible for the robot
to move to a specified location or just general operational
tasks. An error in this may result in drastic consequences
in real-world scenarios.

In this paper, we are working with a Pololu 3pi+ robot.
According to the robot’s system modules from the website,
localization in the world is based on processing the encoder
values attached to the robot’s motors to get the kinematics
for the robot. This is a sound system as it is based on real-
world feedback. However, the encoder-based kinematics
used here also have limitations. For Example, when our
robot collides with an object in operation, it will cause an
odometry error which will, in turn, affect the kinematics
of the robot. This may be due to slipping or jumping when
the robot comes into contact with the object. This also
increases with time as the robot moves in the environment.

B. Motivation

We now understand the impact of collisions on the
kinematics of the 3pi+ robot. This report aims to investigate
the impact of collisions on the kinematics of the robot in
different experimental setups.

During our literature review on the previous studies done
with collision influence on robots, we understood that they
play a significant part in the smooth working of the robot
system. We understood that in some cases where the robot
has other systems to understand the environment, collision
helps give more information about the environment allow-
ing it to correct itself and perform ideally [1]. In some
cases, the robot is made to understand the probability of
future collisions and avoid them altogether. There are more
workflows in case of collision events, but generalized ones
are these [2].

C. Hypothesis Statement

Wheel slippage results from collisions with environmen-
tal impediments. It affects the odometry because our odom-
etry system depends on the rotation of the wheels directly
correlating to the robot’s movement. Our hypothesis is that:

By combining the output from the two bump
sensors with the kinematics data, we determine
how much wheel slippage there is when the
Pololu 3pi+ collides with stationary objects. We
speculate that the error increases with an increase
in the robot’s speed and collision angles.

We investigate this hypothesis using a structured exper-
iment using the mobile Pololu 3Pi+ robot, correcting any
underlying inaccuracies to isolate the inaccuracy brought
on by bump sensors in odometry.

II. IMPLEMENTATION

For the robot to even undertake an experiment to demon-
strate the error caused by collisions, it must be aware of its
place in the world. To achieve this, we have employed a
technique that computes the rotational difference between
encoder counts over time [3], [4]. We then translate these
values to a real-world observation standard of speed and
distance from the predetermined robot dimensions, such as
the wheel radius, count per encoder rotation, gear ratio of
the motor, and the distance the robot can go in a single
wheel spin. Usually, vehicles taking turns use an arc as
their path, but this approach considers the robot rotating
about its axis to reduce error generation. We utilise a PID
controller to keep the robot moving at a constant speed,
and in some instances of the experiment, we also employ
a heading controller that tracks heading direction using
encoder difference to ensure the wheels do not deviate
from the course. These enable the robot to travel straight
ahead, which is essential for our routine. As we state in
our hypothesis, an error can be developed in the kinematics
due to bump sensors that detect a collision of sorts.

A. System Structure

The routine is that our robot goes in a straight line,
collides, turns around, and reaches what it considers the
home or origin of the global frame of reference in that
iteration. There is a difference between what it considers
home to its physical world location of the home. This is
due to the odometry added up due to the collision. Now
there was a need for us to decide the robot’s behaviour
after its collision. We identified two scenarios; One is
the robot goes reverse, and the other is it rotates to the
home location, though here there was a case of the extra
unrelated error caused by the contact forces by the object
during the turn. However, after colliding with the object,



we observed that the robot is not in contact with it, so
when it turns, the contact forces do not influence it. So we
adopted the turnaround behaviour for the robot. We did
different investigations with various environment settings
to investigate the behaviour such that countermeasures
that are non-expensive but rather the matter of change of
behaviour of the robot in response is encouraged. This will
also apply when scaled to behaviour in more prominent and
sophisticated robots in the real world.

Fig. 1: Flowchart showcasing our code structure for the
experiment

B. Bump Sensor

Bump sensors on the 3pi+ robot help us detect our
collisions. With a few minor operational differences, bump
sensors operate similarly to line sensors. However, instead
of IR light reflected off the ground, it is measured off the
two flexible plastic flaps or segments (bumpers) at the front
of the 3Pi+ robot [3]. When the plastic flaps are pressed
against the 3Pi+ body, the time it takes for light to reflect
reduces. This can further be used to detect any obstacle or
the kind of ambient light condition it is present.

We observed the trend for the readings when the flaps
were compressed 30 times and then calculated the mean
of those values to calibrate the bump sensor data to reflect
what is regarded as a bump and can be further quantified
to represent the amount of force with which the collision
happened. Calibration should be conducted in a setting
we regard as an experimental setup since the sensors are
sensitive to the local ambient light levels. We can also make
the robot move in a pre-defined obstacle-filled environment,
using this particular set of sensors to map out the obstacles.
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30∑
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C. Kinematics

A general kinematics model using the encoders for each
of the motors present on the 3pi+ is used for calculating
the robot’s position in a global coordinate frame or the ex-
periment environment, considering the origin as its starting
point. Robot specifications such as wheel diameter, the dis-
tance between the wheels, the distance covered per rotation
of the encoder, and the distance covered per rotation of
the wheel are required to determine the robot’s pose and
orientation. The local coordinates of the robot, such as X-
contribution x(r), Y-contribution y(r) and Orientation r(r)
are calculated from the left and right encoder distances θl
and θr using the following equations (y(r) is ’0’ because
there is no translation possible horizontally considering the
robot architecture),

x(r) =
rθl
2

+
rθr
2

(2)

r(r) =
rθl
2l

− rθr
2l

(3)

In equation 3, 2l is the distance between wheels.
A mobile robot in an experiment always changes its

location over time, making it easier for us to track its
position and orientation in a global frame. Using equations
2 and 3, we can obtain the X, and Y coordinates x(i), y(i)
and the orientation of the robot r(i) in the experiment frame
in equations of time. [5], [6]

x(i)t+1 = x(i)t + (x(r) cos(r(i)t)) (4)

y(i)t+1 = y(i)t + (x(r) sin(r(i)t)) (5)

r(i)t+1 = r(i)t + r(r) (6)

D. PID

For our robot to have smooth performance and perfect
heading control, PID is inevitable. We have divided the PID
control into two specific parts: speed control and heading
control. Heading control has not been used in the main
part of the experiment considering a real-world scenario
of mapping an unknown location but was used to compare
the performance. [7]

In all scenarios, our robot’s motion should be free of
jerks, which occur when it makes abrupt or significant
changes to its motion. For our small robot, rapid changes
to wheel speed are likely to cause the wheels to slip on
the surface, and if this happens, there will be encoder
counts, but the robot will not change its pose in reality. Any
prevention of sudden movements or motions can only be
prevented with the use of PID, which provides continuous
input for the motors to head in a specific direction or
maintain a specific speed from the rotation or a point to
travel; the speed of rotation of wheels. PID controller is to
read a sensor (m(t)) and then compute the desired actuator
output by calculating proportional, integral, and derivative
responses and summing those three components to compute
the output (d(t)). Heading control is generally a feedback
loop for the heading direction using encoder difference to
ensure the robot faces the point where the course is charted.



The error signal can be calculated from the equation 7
below,

e(t) = d(t)−m(t) (7)

We use the following equation and implement this in our
system as our PID controller,

Output = KP ∗ e(t) +Ki

∫ t

0

e(t), dt+Kd ∗
de(t)

dt
(8)

III. EXPERIMENT

A. Overview of Method

Our experiment involved a few steps: setting up the
experiment place, aligning the robot, choosing an object
that can act as a perfect obstacle, and collecting data after
the robot completes its routine.

1) Initial setup of the experiment: To ensure we can
collect our data correctly and ensure there is no
human error, we used black sealing tape and drew
a square. The edges’ centres are marked, so the
robot can be appropriately aligned; also, the centre
of the box is marked. Now, a line of 30 cm has been
drawn from one edge of the box. An obstacle with
considerable weight is chosen for the experiment and
placed at the other end of the line.

2) Now, the robot is aligned correctly for the experiment
using the markers and the box, such that it is facing
in the direction it should go.

3) The routine for the robot starts by giving us leeway to
ensure it is aligned properly; then, it takes its initial
position as the origin of the global frame and starts
going forward. It will move straight until it hits an
obstacle, and then the bump sensors of the robot,
which are situated at the very front, get a fluctuation
in values. If these cross a threshold, the robot stops
its motion and records its location. The new position
is marked, calculates its position from the origin, and
tries to return. The error in its interpretation of origin
from the physical world is calculated.

4) This is done ten times for every experiment, consid-
ering different external conditions.

B. Baseline Experiments

Here, before we go into the odometry error produced
by collision, we need to eliminate the inherent odometry
errors of the robot kinematics, which generally cause the
robot to perceive its location differently in its calculations
compared to its physical location on the plane. If we are
to use this robot directly to calculate any error, these
inherent errors may either increase or decrease the error
caused just by the experimental method. So, we eliminated
those kinematics errors by removing the mean bias from
the values collected from the following tests and deciding
which to adopt for collecting the controlled bump sensor
error. The Line following method was used to make the
robot move in a straight line of 30 cm and return to its
initial position. This was repeated ten times, and the mean
of the errors generated is stored; we can see this in (fig.2).

Now the robot was moved in a straight line without line
following, but with heading control for the direction with

Fig. 2: Error with line following

(a) Origin to Imperative loca-
tion, error in x (mm)

(b) Imperative to Origin, error in
x(mm)

Fig. 3: Baseline experiment graphs

PID speed control to maintain its speed and direction of
heading and the mean error generated is stored. The stored
value from the line following and then with heading control
are compared to get a reference of values we should get in
an optimal condition while moving in a straight line. This
helped us rectify our PI controller and heading control for
errors and get results closest to the optimal values.

Finally, the robot was operated through speed control
PID without heading control, as in a real-life situation,
we do not always have a destination, making the head-
ing control redundant. The mean error obtained from the
experiment (fig.3) that only involves PID speed control is
used for testing the required bias for inherent kinematics
error.

Fig. 4: Errors generated in X(mm) for speeds 15cm/s,
17.5cm/s and 20cm/s respectively

Now, we used different speeds, 15 cm/s, 17 cm/s and
20 cm/s and made the robot complete its routine ten times



on each speed and validated the obtained mean error as the
inherent bias for this particular robot as the perceived origin
location from robot calculations and physical location of
the global frame are the same (fig.4).

We are considering the bias from the X and Y position
of the robot here. However, after conducting several exper-
iments, we now will not be considering the Y coordinates
for investigation of the robot error further in the experiment
as there is a right-oriented bias in the robot causing an
unstable error, which is a systematic error generated by
the limiting hardware of the robot [8].

C. Experiments with different Speeds

So, in the previous experiments, the base performance
of the system was quantified, and the inherent errors were
mitigated. Now we evaluate the collision errors caused by
different conditions of speeds. These errors are correlated
with the speeds to find the effect caused by collision
and conclude about the optimal speed for our further
experiments. First, we conducted the routine at a speed that
our robot was used to in some of our previous experiments.

Fig. 5: Errors generated(mm) in speeds 10cm/s, 17.5cm/s,
25cm/s and 32.5cm/s respectively

Fig. 6: Errors generated(mm) in speeds 15 cm/s, 17.5 cm/s
and 16.25 cm/s respectively

A constant increment in speed is considered, and the
experiment is conducted at three more speeds. So we have

conducted our experiment at four different speeds 10 cm/s,
17.5 cm/s, 25 cm/s and 32.5 cm/s (fig.5).

However, we have taken increments of a significant
difference to find the threshold speed. So, we conducted
the experiment routine with speeds near 17.5 cm/s as the
error generated at this speed was significantly low, and it
also completed the routine in a reasonable amount of time.
The speeds chosen are 15 cm/s, 16.25 cm/s and 17.5 cm/s
(fig.6). The ideal speed was 16.25 cm/s; this is explained
in our Results section.

A speed of 16.25 cm/s is used to obtain data with colli-
sions at various angles in the next part of the investigation.

D. Experiments with different Collision Angles

In the experiment till now, the obstacle was placed
perpendicular to the direction of the robot’s heading. Con-
sidering that angle as zero, we now rotate the obstacle
about the direction of heading to a certain angle, and it is
considered positive for clockwise rotation and negative for
anti-clockwise rotation. We are considering a small angle
of 15 degrees and a large angle of 35 degrees for both
clockwise and anti-clockwise directions.

The routine for these angled obstacle experiments would
be the same, starting with a small quantity of delay to
rectify any human errors, going forward with the help of
a PID speed controller for about 30 cm and hitting the
now rotated obstacle at a certain angle, stop for a small
amount of time to calculates its position, store it, calculate
its heading direction and head home (global frame origin).

We started the experiment from the large angle in the
anti-clockwise direction, i.e., -35 degree angle and pro-
ceeded to increase the angle for every ten iterations and
noted the errors as we proceeded (fig.7). If we are to rotate
the object in the anti-clockwise

Fig. 7: Errors generated (mm) at angles -35 degrees, -15
degrees, 15 degrees and 35 degrees respectively

direction, the object is hit by only the left flap of the
robot, and in the clockwise direction, it is hit by the right
flap of the robot as they are perfectly divided in between
and even a slight angle change from ideally zero would
change the flap with which the robot hits an obstacle.

E. Discussion of Variables

What follows is a list of variables we controlled to
improve the reliability and reproducibility of results:



1) Controlled Variables:

• Battery: During our previous work with Pololu 3pi+,
we found that the battery plays a very significant
role in the performance of the robot; the amount of
charge remaining in the battery dramatically affects
the odometry and if we are trying to calibrate the
bot for a route, using new battery every time is the
best choice. So for every 50 runs of the robot, a new
recharged set of batteries were used.

• Ambient Light: The surrounding ambient light was
controlled. We experimented in a room with the
curtains done and the same lights on. This was done
not to affect the pretty sensitive bump sensors, so we
might need to calibrate it every time we change the
experiment setup.

• Distance of travel: The travel distance from the start
point to the collision or return point was controlled
by measuring it with tape. As we are measuring the
error in a robot’s odometry, distance plays a significant
value, and a minute change can cause all the data
collected from that point useless for the current setup.

• The initial condition: The start position and angle
of the robot was controlled with the making of a
square encompassing the robot’s dimensions, and the
orientation was kept in check with the marks made in
the centre of each edge of the square. Considering the
global coordinate system of the robot and its physical
location, the start position should be appropriately
recorded.(fig.11)

• Angle of collision: For this, a standard scale for mea-
surement was used, and different angles were marked
during the respective experiment. Angled collisions
can cause unplanned rotation of the robot, which
would cause errors in calculating its position.

• Surface friction was kept using the same floor for
all the experiments and regularly cleaned to reduce
variation due to dust and dirt. There is always a
specific difference in the speed our PID controller
calculates and gives and the natural world speed of
the robot due to friction. Using the same setup for the
complete experiment will help remove human error.

2) Independent Variable(s): Our study is related to in-
vestigating the odometry error caused by the bump sensors.
We had to simulate different types of collisions. For this
reason, the speed of the robot at which it collides and the
angle at which the collision occurs are varied. This helped
us understand the nature of collisions as we looked into
the varying angles at a constant, optimal speed.

3) Dependent Variable(s): Distance was the main de-
pendent variable here. The x and y coordinates are from
the starting point of the robot in this iteration to the current
point recorded after coming back from collision. This
helped us understand the diversion of the robot from the
actual assumed path of the robot. We have only considered
the x values for our analysis, understanding that our y
values are too varied to make an inference [8]. The data
collected from the bump sensor can also be considered a
measurable variable affected by the speed and angles.

F. Discussion of Metric(s)

Two primary metrics of comparison between data were
used, mean and variance of the error.

The mean helped in showcasing the average effect of
a robot for a set of iterations in an experimental setting,
which would help us understand how the robot reacts to a
specific metric change in the parameters, and it also makes
it easier for us to compare the obtained for understanding
and rectifying the intrinsic errors in the robot.

We also calculated the variance of the error to show the
position’s variance for the same speed and angle condition
taken in the experiment. The larger the values are, the more
unstable they are. The smaller the values are, the lesser the
range of error distribution and generally more stable the
performance.

We are taking ten samples each so that the mean will
give us an average error, and the variance of the error will
give us the dispersion of data, thus giving us an under-
standing of the system performance and thus confirming
our hypothesis.

IV. RESULTS

A. Baseline Results

To eliminate the initial error in Experiment section B, we
have taken a couple of speeds to recreate our experiment
steps without collision. The results were recorded, and the
mean produced was used to eliminate the base error of
our robot. Our bias is 7.5 from the start position to the
robot collision point, and 3.1 was found to be in the case
of the robot returning from the said collision place to the
start position. This was considered a bias, and the same
magnitude was removed from our code by adding it.

This removes the inherent error, so we can satisfactorily
show that the errors recorded in the following change in
parameters are solely due to them.

B. Results with Different Speeds (draft)

We have plotted the data collected by our experiment
with various speeds, showcasing the error and variance.
The variance of the error allows us to intuitively see the
effect of speed and conclude its reaction to the odometry
error. (fig. 8)

(a) X Errors(mm) generated in
speeds 10 cm/s, 17.5 cm/s,
25 cm/s and 32.5 cm/s respec-
tively

(b) Y Errors(mm) generated in
speeds 10 cm/s, 17.5 cm/s,
25 cm/s and 32.5 cm/s respec-
tively

Fig. 8: Variance of error for different speeds

Here, in these plots, we observe the variation in the error
values in the experiment. As we can see, for the x coor-
dinates of the errors measured, the least variation in error



is at 10 cm/s. This speed shows significantly fewer errors.
At 32.5 cm/s, we see huge errors with a relatively large
deviation. However, we can see that the error significantly
varies across different speeds for the Y coordinates. This
again confirms our decision not to consider the y values.
We can, from this data, get an estimate of how the speed
at large values increases the error, and at small values is
manageable. This information is used to find a threshold
speed for our further experiments.

(a) X errors(mm) for speeds
15 cm/s, 17.5 cm/s and
16.25 cm/s respectively

(b) Y errors(mm) for speeds
15 cm/s, 17.5 cm/s and
16.25 cm/s respectively

Fig. 9: Variance of error for different angles

In (fig. 9), we can see the variation in error values for the
X and Y values. For the Y values, the minor variance was
seen at 16.5 cm/s, and the largest was at 15 cm/s. For the
Y values, the least was 17.5 cm/s, and the most significant
was 15 cm/s. Due to the minor variation in x error in 16.25
cm/s, this was chosen as our optimal speed for collision.

C. Different hitting Angle results (draft)

The trend of error has been observed and plotted here
with different angles.

(a) X error(mm) for angles -35
degrees, -15 degrees, 15 degrees
and 35 degrees respectively

(b) Y error(mm) for angles -35
degrees, -15 degrees, 15 degrees
and 35 degrees respectively

Fig. 10: Variance of error for different angles

Now, in (fig. 10), we are seeing the variance in the error
values; this gives an insight into how the collision angles
affect the error in our system. A consistent pattern observed
from all the errors in this and previous sections error is that
we are always getting the y errors more significant than the
x errors. Here we can observe Now variation in error at 15
deg of collision. Whereas at other angles, the error variation
is minimal and in a particular range in the x direction, the
error is significant in the y direction, and the values are
distributed very differently.

We can also see the angles are incremented positively,
i.e. the right flap of the robot collides with the object, and y

values are decreasing linearly. This shows us that the robot
is indeed right-biased.

Here we have studied the effect of different collision
angles and showcased how they affect our system.

V. DISCUSSION AND CONCLUSION

We have initially hypothesised that:
By combining the output from the two bump
sensors with the kinematics data, we determine
how much wheel slippage there is when the
Pololu 3pi+ collides with stationary objects. We
speculate that the error increases with an increase
in the robot’s speed and collision angles.

Our study supported our hypothesis, as shown and
discussed in the results section. We have shown how the
various speeds affect the error by isolating it and then,
for various collision angles, deriving optimal speed from
the previous set of experiments. Our experiment was done
in a very controlled environment, minimising the external
factors’ effect on the sensors as much as possible.

Future work on this going through can be done by
taking off the controlled variable and moving slowly more
and more towards emulating real-world case environmental
conditions. This could help us improve the results by taking
the output of the encoder-based kinematics model, making
it more sturdy for future advanced experiments with the
Pololu Robot.
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VI. APPENDIX

Fig. 11: Setup of the experiment


