
APPLE COUNTING IN AN ORCHARD
By

Lohit Yarra, (22071774)

Sathvik Kadimisetty, (22071773)

Adip Ranjan Das, (22071780)

Atharva Kulkarni, (22071782)

Sakshi Jadav, (22071797)

UFMFRR-15-M Machine Vision Report

Department of Engineering Mathematics

UNIVERSITY OF BRISTOL

&

Department of Engineering Design and Mathematics

UNIVERSITY OF THE WEST OF ENGLAND

January 9, 2023

Contents
Page

1 Introduction 4

2 Related Works 5

2.1 History Before Deep Learning . 5

2.2 The Deep Learning Era . 6

2.3 Lohit Literature Review . 7

3 Data Acquisition and datasets 9

3.1 Data Acquisition . 9

3.2 Datasets . 9

4 Research Methodology 10

4.1 Conventional Approach . 10

4.2 Deep learning Approach (Using Yolo v5s) . 10

5 Experiment and Implementation 13

5.1 Conventional Approach . 13

5.2 Deep learning Approach (Using Yolo v5s) . 19

6 Results and Evaluation 24

6.1 Evaluation Metrics . 24

6.2 Results . 25

6.3 Evaluation . 26

7 Conclusions and Future works 28

7.1 Conclusion . 28

1

7.2 Future work . 28

A Appendix 29

References 30

2

List of Tables

2.1 Papers reviewed . 7

4.1 Pre-trained checkpoints . 11

6.1 The Precision and Recall . 25

3

1 Introduction
Automated apple counting is crucial in agriculture because it allows for accurate forecasting,

inventory management, and yield predictions. Deep learning is a type of machine learning in which

data is processed and analysed using multiple layers for neural networks. Large datasets, which are

required for object detection, can be used to train these models. Once trained, the model can learn

to recognise a diverse set of images and a wide range of apples while considering various aspects of

the possible environment. While manual counting can be time-consuming and error-prone, image

processing and machine learning techniques provide promising alternatives. We proposed, imple-

mented, and compared a traditional image-processing and machine-learning approach for apple

counting in this report. We aim to evaluate these methods’ accuracy, efficiency, and robustness

thoroughly. We also offer insights into each approach’s strengths and limitations, aiming to inform

future research and development in this field.

4

2 Related Works

2.1 History Before Deep Learning

2.1.1 Feature-based object detection

Using distinguishing traits that may be extracted from photos, feature-based object detection at-

tempts to identify objects. The scale-invariant feature transform (SIFT), created by David Lowe in

1999, is one of the most popular feature-based object identification techniques.

2.1.2 Template Matching

This straightforward approach of object detection includes matching a small image (template) with

parts of a bigger image to find a match. A notable contribution to the development of template

matching could be The development of the Normalized Cross Correlation (NCC) measure, which

is a common metric used to evaluate the similarity between the template and the image.

2.1.3 Edge-based object detection

Identifying items in an image by locating their edges is known as edge-based object detection.

The Canny edge detector, created by John Canny in 1986, is one such edge-based object detection

technique. The basis of the Canny edge detector is the concept of identifying "strong" edges (edges

with high contrast) in an image and connecting them to generate a contour. This algorithm uses 4

different filters to identify the edges in different orientations.

Edge detection in HSV color space

The development of algorithms like the Color-Based Probabilistic Tracking algorithm and the HSV

(Hue, Saturation, Value) Color Model for Object Detection allowed for the application of the HSV

5

colour space in the field of object detection as early as the early 2000s. These methods examined

the hue, saturation, and value channels independently in the HSV colour space to identify objects

based on their colour. The HSV color space can be used in conjunction with edge-based object

detection to improve the accuracy of the object detection particularly in applications where the

color and shape of the object are important features.

2.2 The Deep Learning Era

In the beginning stages,taking into account objects with "different sizes" and "different aspect ra-

tios" was necessary for multi-scale object recognition this was one of the major technological dif-

ficulties of object detection. Algorithms that can run effectively on specialised hardware including

graphics processing units are used to enable real-time object recognition (GPUs). Convolutional

Neural Networks (CNNs): CNNs are a type of neural network designed specifically for image

recognition tasks. They are commonly used in object detection models because they are able to

learn and extract useful features from images automatically, without the need for manual feature

engineering. The two categories of detection networks are based on the candidate regions (two-

stage detector) and the regression approach (one-stage detector) Region-Based Convolutional Neu-

ral Networks (R-CNNs): R-CNNs are a type of object detection model that uses CNNs to extract

features from a region of interest in an image, and then uses a separate classifier to classify the

object and predict its location.

Fast R-CNNs: Fast R-CNNs are an improvement on the R-CNN model that uses a shared

convolutional layer to process the entire image, rather than individual regions. This allows the

model to be more efficient and faster to train. Girshick in in April 2015 presented the selective

search approach to improve the model’s object detection accuracy called Fast RCNN.

Faster R-CNNs: Faster R-CNNs are another variant of the R-CNN model that uses a region

proposal network to generate region proposals, rather than using a sliding window approach. This

allows the model to be more efficient and accurate.

You Only Look Once (YOLO): YOLO is a single-shot object detection model that uses a fully

convolutional network to predict the bounding boxes and class probabilities for objects in an image.

YOLO is known for its speed and efficiency, making it well-suited for real-time applications.

6

Single Shot Multibox Detector (SSD): SSD is another single-shot object detection model that

uses a CNN to predict bounding boxes and class probabilities for objects in an image. SSD is

known for its speed and ability to handle objects of various sizes.

2.3 Lohit Literature Review

Here we look into some of the methods that were researched to understand previous work.

Author Type of Fruit Methodology Metrics

Guantao et al.(2020) Apples Faster R-CNN, Improved YoloV3 Training loss curve and mAP score curve

Steven W. Chen et al.(2017) Apples and Oranges Blob detection, Count and linear regression lsquare error, Ratio Counted, STD Dev

Leonardo et al.(2020) Apples CNN, Object detection Average precision, true-positive, false-positive, Intersection over union

Table 2.1: Papers reviewed

Here as we have a table mentioning the papers that were taken for understanding and further

exploring the current advancements.

The first paper by Gauantao et al.(2020)[1] had different detection models studies and compared

for different interference conditions. The models are AlexNet + Faster RCNN, ResNet101+Faster

RCNN, DarkNet53+ Yolov3, Improved Yolov3. Transfer learning was used to accelerate the train-

ing process. Results here showed that the improved YOLOV3 model had the best recognition effect

amongst them. It also had better performance for occlusion, spot, overlap and incomplete apples

with a recognition recall higher than 88.5

The second paper by Steve E. Chen wt al.(2020)[2] used Blob Detection neural network, count

neural network and final count linear regression. The performance of count for the apples and

oranges were used declared and shown by showcasing l2 error, ratio counted and STD Dev. Also,

the performance for distinct datasets of orange in daylight and green apples at night, utilizing human

generated labels as ground truth. The l2 error was best in case oranges as compared to apples. There

is a limitation here human generated labels are prone to error which are not desirable. The positive

aspect here would be the accurate counting from the limited dataset and short labelling time.

The third paper by Leonardo et al. (2020)[3] used a ATSS deep learning based approach. Here

initially, other object detection methods were first studied namely RetinaNet, R-CNN, Cascade

7

and R-CNN, Faster R-CNN, Feature Selective Anchor Free and HRNet. Then the main proposed

method Adaptive Training Sample Selection was proposed which are operated on close range and

low cost terrestrial RGB images. Here, the main advantage of the ATSS method is that only the cen-

tre point of the objects is labelled, which worked better than relying on bounding box annotations

in heavily dense fruits.

For Deep learning approach, we decide on YOLOv5 after much deliberation, thought the ATSS

method provides better solution for apple counting that YOLO. This is due to the significant differ-

ence in the dataset we are using. The ATSS dataset consists of large number of clustered apples,

whereas our are very minimal in comparison. Yolo method was explored particularly in the first

paper[1], which gave us the required data to adopt it for our project.

8

3 Data Acquisition and datasets

3.1 Data Acquisition

The images for this task were obtained from a dataset provided by the University of Minnesota

(Häni et al., 2019). These images were obtained by video footage from different sections of the

orchard using a standard Samsung Galaxy S4 cell phone. During data collection, video footage

was acquired by facing the camera horizontally at a single side of a tree row. Individual images

were extracted from these video sequences.

3.2 Datasets

The dataset consisted of three folders “Test data”, “Detection”, and “Counting”. This “Test data”

folder consisted of counting, detection and segmentation, whereas the “Detection” folder consisted

of images, JSON files mapping and ground truth, and the “Segmentation” folder consisted of im-

ages and masks.

We used the images in detection>train to build our yolov5 model, and this was run on the test

images after validation with a small set of images in the training set was done. The 670 PNG files

for training were uploaded to the cloud and synced with Google collab to run the dataset. Similarly,

the test dataset was imported into the collab workspace file directory during the session from the

cloud.

There are various types of apples and surroundings in the “train” dataset, for example, red

apples, green apples, and a wide variety of distant and close views of apples, as well as differences

in light and shadow in the environment, which complicates and makes detection considerably more

difficult.

9

4 Research Methodology
In accordance with our literature review, we decided on using the combination of HSV masking

and canny edge detection for detecting apples with the conventional approach, whereas for the deep

learning approach, we went with YoloV5s. More about this is explained below.

4.1 Conventional Approach

The conventional approach in image processing refers to algorithms used to manipulate digital

images to extract functional pieces of information. When applied to the image, some algorithms

change the value of the individual pixel, whereas others use neighbouring pixel values to transform

the individual pixel value. The conventional approach is helpful in image segmentation, adjusting

the brightness and contrast, smoothing and sharpening the image and thresholding.

For the apple counting task, we used the open-source library OpenCV, a machine vision library

and python programming language. Multiple filtering algorithms were used to extract the location

of the apples in the image. We started by extracting the colour of the red apples using HSV colour

space and creating a mask which detects the red colour. The mask was then passed through a blob

detection algorithm that returned the apples’ location and counts.

The SimpleBlobDetector is a machine-learning approach that detects blobs in an image. It is a

fast and simple algorithm based on a Dense Feature Detector and uses Hu Moments to detect the

shape of blobs. These blobs can be used in object tracking and counting.

"Image moments are the weighted average of image pixel intensities". It uses a set of 7 numbers

to calculate the moments. The Hu Moments are invariant to translation, rotation or scaling.

4.2 Deep learning Approach (Using Yolo v5s)

YOLO (You Only Look Once) is a real-time object detection algorithm that divides the input image

into a grid of cells and predicts the class and location of objects within each cell.

10

For the deep learning approach part of the experiment, we decided to use the YOLO v5 model

for its ability to perform detection and classification in a single forward pass of the network, making

it much faster than other object detection algorithms that require multiple passes or separate stages

for detection and classification. Pre-trained checkpoints are as below.

Model size(pixels) mAPbox
50−95 mAPmask

50−95 Train time300epochsA100 SpeedONNXCPU(ms) SpeedT RTA100(ms) params(M) FLOPs@640(B)

YOLOv5s-seg 640 37.6 31.7 88:16 173.3 1.4 7.6 26.4

Table 4.1: Pre-trained checkpoints

This model consists of a backbone network, a neck and a detection head. The detection head

predicts the class and location of objects in the image. The CSPDarknet is used as a backbone net-

work and is responsible for extracting features from the input image; this helps reduce the model’s

parameters and FLOPS to increase the interference speed and accuracy. The neck consists of a

combination of FPN and PANet. FPN transfers the semantic features from the deep layer to the

shallow layer to enhance the semantic representation at multiple scales, while PANet transfers the

location information from the shallow layer to the deep layer to enhance localization at multiple

scales. The deep feature map contains more robust semantic features and weaker localization in-

formation, while the shallow feature map contains more robust location information and invalid

semantic features.[4].

For the model’s training, the loss function indicates the difference between the predicted value

and the ground truth. In YOLO v5s, a joint loss function is used to train bounding box regression,

classification and confidence. The used loss function is:

L = Lcls +Lbox +Lcon f (4.1)

Where Lcls indicates the classification error; Lbox indicates the bounding box regression error;

Lconf indicates the confidence error.

The classification error Lcls is computed by:

Lcls =
k2

∑
i=0

IiE(p̂i (c), pi(c)) (4.2)

11

when the ith lattice of class objects exists, Ii takes 1, otherwise it takes 0. p̂i(c) and pi(c) indicate

the true probability and predicted probabilty of the ith class objects, respectively.

The localization loss Lbox uses generalized intersection over union loss(GIoU) refers to finding

a minimum closed shape C such that it can enclose the predicted box Ap with the true box Ag, thus

the mathematical expression of Lbox is:

Lbox = 1− IoU(Ap,Ag)+
Ac −Ap −Ag + I

Ac (4.3)

Where Ap indicates the area of the predicted frame, Ag suggests the area of the real frame, Ac

indicates the overlapping area of the calculated predicted and real frames, and IoU indicates the

intersection ratio of the calculated real and predicted frames.

The mathematical expression of Lconf is:

Lcon f =
K2

∑
i=0

M

∑
j=0

Ii, jE(Ĉi,Ci)−λnoob j

K2

∑
i=0

M

∑
j=0

(1− Ii, j)E(Ĉi,Ci) (4.4)

where K2 indicates that the input image is divide into K x K grids, and each grid produces

M candidate anchors. When the bounding box is a positive sample, Ii, j takes 0, and when it is a

negative sample, Ii, j takes 1. Ci and Ĉi indicate the confidence level of the ith predicted bounding

and the true bounding box, respectively.

E(.) is a binary cross-entropy loss function, mathematically expressed as:

E(X̂i,Xi) = X̂iln(Xi)+(1− X̂i)ln(1−Xi) (4.5)

The YoloV5 neural network training method was made and is ideal for object detection gener-

ally. When trained with a large open-source labelled dataset, it can look through large datasets of

images or videos to identify objects specified to the system or whatever is on a screen. Different

versions of YOLO are decided for different resolutions and data sets. We need to detect the apples

in an orchard and count the number of apples. This perfectly falls in line with YOLO’s speciality.

We specifically used YOLOv5s for its efficiency with our small dataset with optimum results. The

characteristics were discussed in the table provided above.

12

5 Experiment and Implementation
As discussed in the research methodology, both the conventional and deep learning approaches

worked with Python Programming. A detailed explanation and the general workflow are explained

below.

5.1 Conventional Approach

The algorithms used for counting apples in an orchard using the conventional approach are dis-

cussed here. The overview of the approach was reading the image first using OpenCV, converting

the colour space to HSV, and applying the blob detection algorithm on top of the mask created from

the HSV colour space.

5.1.1 Reading image

The libraries were imported in the python file, and the image reading was done using OpenCV

import cv2

import numpy as np

image_bgr = cv2.imread("input_image.png")

OpenCV reads the image in the BGR format (Blue, Green and Red), so when previewing the

image directly without converting to RGB colour space will result in a different colour format than

expected.

5.1.2 HSV Color Space

Figure 5.1 represents the HSV (Hue, Saturation and Value) colour space. It is also known as HSB

colour space which stands for Hue, Saturation and Brightness.

13

Figure 5.1: HSV Color Space, Image credit: Kemal Erdoğan

It measures how much light is reflected by the pixel. [5]Hue represents the pixel’s colour rang-

ing from 0 to 360 degrees. Saturation ranges from 0% (grey) to 100% (saturated) which measures

how much white is mixed with the pure colour. Value or brightness ranges from 0% (black) to

100% (white). The high pixel value is brighter, and the low pixel value is darker.

The below code was used to convert the image, which was read in BGR format to HSV format

image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)

The separation between H, S and V allows for more accurate colour selection and manipulation

since there is significantly less effect of changing light on the HSV colour space. This method is

suitable for the apple counting use case as in the orchard, some of the apples in the trees will be

directly under sunlight, and others might be in the shady area of leaves. Also, there are different

shades of red apples which the apple undergoes to become ripe from raw. This will enable us to

create a mask for our application. This mask will be used to isolate the apples, which are red from

the background, which is the environment.

To create a mask, we use the following block of code, which accepts two scalar values: upper

bounds and lower bounds for H, S and V.

low_apple_red = (160.0, 153.0, 153.0)

high_apple_red = (180.0, 255.0, 255.0)

low_apple_raw = (0.0, 150.0, 150.0)

14

https://www.researchgate.net/profile/Kemal-Erdogan

Figure 5.2: Creating of the mask using HSV colour space

high_apple_raw = (15.0, 255.0, 255.0)

mask_red = cv2.inRange(image_hsv, low_apple_red, high_apple_red)

mask_raw = cv2.inRange(image_hsv, low_apple_raw, high_apple_raw)

mask = mask_red + mask_raw

mask = cv2.bitwise_not(mask)

For the requirement of apple counting, we create two masks: one for raw red apples and the

other for ripe red apples. The upper and lower bound of the H, S and V was determined by changing

the values in the S and V region after selecting the colour range for red for the H region. Adding

both masks will separate the apples of different shades. This will enable us to extract the apples

from the background. The mask will isolate the apples removing the rest of the background. As

shown in figure 5.2 the mask will have blobs which are the isolated apples from the image. The

next step is to count the number of blobs in the mask, which will give us an approximate count of

the apples in the image.

15

5.1.3 Simple Blob Detection Algorithm

Figure 5.3: Applying the blob detection algorithm to count apples

[6] Blob is a vague shape that does not have any specific shape. Python’s SimpleBlobDetector

library is a part of the OpenCV computer vision library which detects these shapeless blobs in an

image.

This library can detect the key points in an image which are essential. In this case, the region of

interest is the location of the circular blobs. These blobs can be of any size or shape and of different

colours and shades.

For the use-case of apple counting after applying the mask on the image, the resulting image

was just black blobs, as shown in figure 5.2. These blobs were shapeless, and their shade was black

only. Each black Blob in the mask represents an apple, as shown in figure 5.3.

The default parameters of SimpleBlobDetector are needed to perform better to detect and count

the blobs. So, the library provides some custom parameters that can be changed to improve the

blob detection algorithm. Figure 5.4 represents the parameters that can be used. The area puts

a threshold on how big or small the Blob should come under the algorithm’s detection criteria;

thresholds represent the shade of the colour, circularity, inertia, and convexity, focusing on the

shape of the Blob.

16

Figure 5.4: Parameters of the SimpleBlobDetector, image credit:Learn OpenCV

The code below shows how the SimpleBlobDetector was implemented:

params = cv2.SimpleBlobDetector_Params()

params.filterByArea = True

params.minArea = 20

params.filterByConvexity = True

params.minConvexity = 0.5

detector = cv2.SimpleBlobDetector_create(params)

keypoints = detector.detect(mask)

blank = np.zeros((1, 1))

blobs = cv2.drawKeypoints(image, keypoints, blank, (255, 255, 255),

cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

As per the mask, we got to isolate the apples from the background; it can be seen that the area of

the blobs is very small, and the convexity, which is the shape of the blobs, varies. We are not using

circularity or inertia as we are not focusing on how circular the blobs are or how many sides the

Blob has. So, filtration of the blobs was done using area and convexity, and the parameter values

17

https://learnopencv.com/blob-detection-using-opencv-python-c/

Figure 5.5: Results of SimpleBlobDetector algorithm

were determined by the hit and trial method to get the optimum performance and reduce the false

detection as much as possible.

The parameters were passed to the SimpleBlobDetector algorithm, and then we can get the

detected key points of the blobs by calling the method "detect" using the object of the algorithm

"detector". After storing the locations of the blobs, the key points are drawn as white circles on

top of the original image to show where the detections were made, as shown in figure 5.5.

18

5.2 Deep learning Approach (Using Yolo v5s)

Approach 2 used YOLOv5s to identify the apples in the images and count them. The training

images were first loaded on Roboflow for preprocessing, and then labelling was done for around

150 images by hand, then this was augmented further when converting it into a dataset to use

for training on Google collab. Our core packages used were PyTorch, roboflow and YOLOv5,

IPython.display and OS for operating system interface.

5.2.1 Dataset creation

The acquisition of the current data has been given in the ’Data acquisition and datasets’. Now, the

acquired images are loaded onto the Roboflow website for labelling and creating a data set.

There are green and red apples in the uploaded images, so we had to make two classes, ’green-

apples’ and ’red-apples’, for the model to distinguish between them. Then, around 150 images

were labelled using the Yolo v5s standard. Now, these labelled images are sent for the creation of

the dataset.

On the roboflow website, there are multitudes of options that can help us create a dataset with

more images than labelled by tilting the present set by a particular angle and in a way, it does not

affect the quality or orientation of the objects labelled.

We have downloaded the export code to our colab notebook. We can export the generated

dataset either by downloading the zip file or by getting a download code for the notebook and

letting the program do the downloading for us. It is as follows.

!pip install roboflow

from roboflow import Roboflow

rf = Roboflow(api_key="----")

project = rf.workspace("------").project("apple_orchrad")

dataset = project.version(1).download("yolov5")

19

Figure 5.6: Roboflow workspace

5.2.2 Creating the Deep Learning model

To create a YOLOv5s model, we first need to clone the repository into our notebook. The required

dependencies must be loaded onto the notebook for the model to work correctly. Then, a variety

of packages can be installed based on our preferences. The above description can be shown in the

code below.

#clone YOLOv5 and

!git clone https://github.com/ultralytics/yolov5 # clone repo

%cd yolov5

%pip install -qr requirements.txt # install dependencies

%pip install -q roboflow

import torch

import os

from IPython.display import Image, clear_output # to display images

20

5.2.3 Deep Learning Model YOLO v5s

We first load the dataset from the roboflow workspace to the colab notebook after creating our

’os’ environment. We get two folders in the colab workspace ’train’ consisting of 261 images, and

’valid’ consisting of 6 images.

os.environ["DATASET_DIRECTORY"] = "/content/datasets"

After this, train images are used to train the model. Our dataset resolution was 640 × 640; it

was run in batches of 16 and 100 epochs.

Figure 5.7: Loss Function Graphs

We trained the model on 200 epochs, the Loss Function Graphs were the graph levelled off, and

the model was over-fitted. Reducing the epoch to 100 improved the model performance less false

predictions, which can be observed from figure5.7.

!python train.py --img 640 --batch 16 --epochs 100 --data

/content/datasets/apple-orchard/data.yaml --weights yolov5s.pt --cache

The Google Colab notebook, the environment in which we are programming the model, took

19 minutes and 10 seconds to train the model with the images we provided. We used GPU as

our Hardware accelerator, which can reduce the amount of time required to train by a significant

amount.

As the model is trained for two variants of apple in all sorts of lighting conditions as well as the

ripe and unripened conditions, we can now test the model for its accuracy and precession. We use

all the 670 images available for us to test the model. Before running the model, we hypothesised

21

that using a confidence level of 15 per cent might help us eliminate the false positives generated

from using ’green apples’ as the objects to detect in an orchard background, the colour being almost

the same. The program to detect the number of apples is given below. For this, we have selected

the best weight file, which is generated automatically in the YOLO environment is selected. This

file is selected as the best weight file consisting of a considerably low loss, and there is no chance

of overfitting.

!python detect.py --weights

/content/yolov5/runs/train/exp/weights/best.pt --img 640 --conf 0.15

--source /content/test/images

After running this, we saw that the model behaved well, eliminating false positives around here.

Then the trained model was run on validation and test images to showcase our solution. A specific

set of images was selected to showcase our solution’s performance diversity for different sets of

apples. This was noted down, and corresponding images were displayed and saved to present in

this report.

22

Figure 5.8: Result from running the detection code on a set of images, displaying the number of

apples present in a single image.

23

6 Results and Evaluation

6.1 Evaluation Metrics

Obtained count or output of a deep learning model is first evaluated to obtain the model’s Precision,

Accuracy and Recall. These metrics help us gauge the quality of our model in a given dataset.

When evaluating a certain outcome of the model, they can be classified into four types; they are

as follows.

• True Positives are when you predict an observation belongs to a class and it does belong to

that class.

• True Negatives are when you predict an observation does not belong to a class and it does

not belong to that class.

• False Positives are when you predict an observation belongs to a class when in reality, it does

not.

• False Negatives are when you predict an observation does not belong to a class when in fact,

it does.

Three main metrics are involved in evaluating a model, which generally helps us compare the

results with others and choose the one with better performance. The three metrics are Accuracy,

Precision and Recall.

Accuracy is the percentage of correct predictions per test data. It is the division of correct

predictions into total predictions.

Accuracy =
CorrectPredictions

AllPredictions
(6.1)

Precision is defined as the fraction of the accurate predictions among all the predictions that

are said to belong in a particular class.

24

Precision =
TruePositives

TruePositives+FalsePositives
(6.2)

Recall is the fraction of the accurate predictions of a class among the objects that belong to the

said class.

Recall =
TruePositives

TruePositives+FalseNegatives
(6.3)

6.2 Results

6.2.1 Accuracy

The Precision and Recall of the model have been obtained. The Accuracy of the YOLO v5s model

we have used above is 84.9 %. These values are tabulated and presented below.

Method TP FP Precision Green Apple Precision Red Apple Recall Green Apple Recall Red Apple Running Time

YOLO v5s 855 152 88.5 81.8 94.4 82.17 19m 10s

Table 6.1: The Precision and Recall

These values obtained are under the condition of a 0.15 confidence threshold. Here TP indicates

True positives, and FP indicates False Positives. The True, False positives of Green and Red apples

individually are 408, 53 and 447, 99, respectively.

The Accuracy of the Conventional image processing was obtained by counting the apples in

the individual image manually and passing the same image through the conventional function. The

count of detected apples was taken, and the Accuracy was found to be 10%.

6.2.2 Precision and Recall

The values of Precision and Recall are calculated individually for the green and red apples. Preci-

sion is 88.5 and 81.8; Recall is 94.4 and 82.17, respectively, for Green and Red apples. From the

precision and recall values, we can calculate the F1 score. F1 score increases with an increase in

precision and recall values and vice versa. The formula for calculating it is given below. The Beta

25

parameter of the F1 can be varied based on the preference between Recall and Precision. If the

Beta is less than 1, Precision is preferred, and Recall is preferred if the Beta is greater than 1.

Fβ = (1+β
2)

Precision∗Recall
β 2 ∗Precision+Recall

(6.4)

The F1 score is calculated for different values of Beta and is presented below.6.1

Figure 6.1: F1 Score for Green and Red apples are plotted against Beta

6.3 Evaluation

Conventional image processing and deep learning methods are two techniques used for manipulat-

ing digital images. The conventional process relies upon manually designed filters and algorithms

to process the image, whereas the deep learning method involves training an artificial neural net-

work on a dataset and making predictions on the image. Figure 6.2a represents the count of apples

using the conventional approach, and figure 6.2b gives the count of apples on the same image used

for a conventional method using the deep learning method. From the figures, we can evaluate the

performance of the conventional v/s deep learning method. In the image, the total count of apples

that was done manually was 103 apples, whereas the conventional method detected only seven

apples, and the deep learning method counted 109 apples. The conventional method is prone to

26

environmental lighting, which causes different shades of red apples. Another issue occurs when

the apples are in a bunch touching each other, creating a single big red blob, and the third issue

is occlusion. In the deep learning approach, we labelled different shades of apples, images with

occlusion, and images where apples are in a bunch. This made the neural network learn different

situations where apple can be detected as the weight of the neural network is adjusted with fea-

tures extracted by the model from the image, and we get better-improved results compared to the

conventional approach.

(a) Conventional Method (b) YOLO v5s

Figure 6.2: DIfference between the Apples counted by both the methods used is presented

27

7 Conclusions and Future works

7.1 Conclusion

7.2 Future work

There are many potential future directions for apple detection methods. We used two methods,

out of which the Deep learning method (using YOLO V5) has proven significantly good results

and has shown a high accuracy rate and can successfully detect green and red apples separately by

overcoming challenges like different lighting conditions and obstacles like leaves.

But we didn’t take into consideration about weather and night harvesting scenario. Our method-

ology can be run on different kinds of datasets produced for different environmental condition and

the related data-acquisition methods.

Further studies are suggested with other fruit varieties, of which colour plays a more important

role in differentiating them from leaves. Additional fruit attributes such as shape, weight, and

colour are also significant information for detecting the market price and are recommended for

further investigation.

28

A Appendix
This is optional. Not every report needs an appendix If you have additional information like

code pieces, long tables, etc. that would break the flow of the text in the report, you can put it here.

29

References
[1] G. Xuan, C. Gao, Y. Shao, et al., Apple detection in natural environment using deep learning

algorithms, IEEE Access [online], vol. 8 2020, pp. 216 772–216 780, 2020. DOI: 10.1109/

ACCESS.2020.3040423.

[2] S. W. Chen, S. S. Shivakumar, S. Dcunha, et al., Counting apples and oranges with deep

learning: A data-driven approach, IEEE Robotics and Automation Letters [online], vol. 2,

no. 2 2017, pp. 781–788, 2017. DOI: 10.1109/LRA.2017.2651944.

[3] L. J. Biffi, E. Mitishita, V. Liesenberg, et al., Atss deep learning-based approach to detect

apple fruits, Remote Sensing [online], vol. 13, no. 1 2021, 2021, ISSN: 2072-4292. available

from: https://www.mdpi.com/2072-4292/13/1/54.

[4] J. Li, Y. Qiao, S. Liu, J. Zhang, Z. Yang, and M. Wang, An improved yolov5-based vegetable

disease detection method, Computers and Electronics in Agriculture [online], vol. 202 2022,

p. 107 345, 2022, ISSN: 0168-1699. DOI: https://doi.org/10.1016/j.compag.2022.

107345. available from: https://www.sciencedirect.com/science/article/pii/

S0168169922006536.

[5] R. Python, Image segmentation using color spaces in opencv + python. available from: https:

//realpython.com/python-opencv-color-spaces/.

[6] D. S. Gajbhar, Detecting and counting apples in real world images using opencv and python.

available from: https : / / shrishailsgajbhar . github . io / post / OpenCV - Apple -

detection-counting.

[2] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: a fruit detection

system using deep neural networks,” Sensors, vol. 16, no. 8, p. 1222, 2016.

30

https://doi.org/10.1109/ACCESS.2020.3040423
https://doi.org/10.1109/ACCESS.2020.3040423
https://doi.org/10.1109/LRA.2017.2651944
https://www.mdpi.com/2072-4292/13/1/54
https://doi.org/https://doi.org/10.1016/j.compag.2022.107345
https://doi.org/https://doi.org/10.1016/j.compag.2022.107345
https://www.sciencedirect.com/science/article/pii/S0168169922006536
https://www.sciencedirect.com/science/article/pii/S0168169922006536
https://realpython.com/python-opencv-color-spaces/
https://realpython.com/python-opencv-color-spaces/
https://shrishailsgajbhar.github.io/post/OpenCV-Apple-detection-counting
https://shrishailsgajbhar.github.io/post/OpenCV-Apple-detection-counting

	Introduction
	Related Works
	 History Before Deep Learning
	The Deep Learning Era
	Lohit Literature Review

	Data Acquisition and datasets
	Data Acquisition
	Datasets

	Research Methodology
	Conventional Approach
	Deep learning Approach (Using Yolo v5s)

	Experiment and Implementation
	Conventional Approach
	Deep learning Approach (Using Yolo v5s)

	Results and Evaluation
	Evaluation Metrics
	Results
	Evaluation

	Conclusions and Future works
	Conclusion
	Future work

	Appendix
	References

